Long Life Concrete Pavement Joint Performance
Background and Mechanisms

Peter Taylor,
Jason Weiss,
Larry Sutter

The problem?

• Some joints are deteriorating faster than we would like
Outline

• Mechanisms of Failure
• Why Now, What’s New?
• Current Recommendations

What Do We Know?

• Cold states
• Water
• Not all the same
Outline

• Mechanisms of Failure
 • Saturation / Freezing and Thawing
 • Chemical Attack
 • Incremental Cracking
 • Others

Saturation of the Paste
Typical Symptoms

- Shadowing
- Thin flakes

The Symptoms

- The aggregate is polished
Saturation

• Damage occurs where the concrete does not dry out

Saturation

• Bottom-Up Moisture
Saturation

• Bottom Up Moisture

Saturation

• Tunneling – water trapped in saw-cut
Saturation

- Tunneling – water trapped in saw-cut

Saturation

- Top-Down
The Symptoms

• Water again

Purdue Work

• Damage depends on degree of saturation

Relative Dynamic Modulus (N=6)

Jason Weiss
Salts increase saturation

Purdue Work

- Some salts prevent drying
An Example

- Draining base dries in rain
- Same joints stay wet with salt treatment
Purdue Work
• Saturation rate influenced by air and w/c

Outline
• Mechanisms of Failure
 • Saturation / Freezing and Thawing
 • Chemical Attack
 • Incremental Cracking
 • Others
Salts can cause chemical attack

• Calcium oxychloride is formed
 ➢ Calcium from cement
 ➢ Chlorides from salts
 ➢ Expands
 ➢ At 40°F

• Rates and amount are limited though

Salts can cause chemical attack

• Friedel’s Salt – Calcium-chloro-aluminate
 ➢ Calcium and aluminates from cement
 ➢ Chlorides from salts
 ➢ Also expands
Salts can cause chemical attack

- Ettringite Deposition
 - Calcium sulfo-aluminate
 - Indicates abundant water
 - Compromised air void system?

Other mechanisms

- D-Cracking
 - An aggregate problem
Other mechanisms

• Alkali silica reaction
 ➢ An aggregate problem
• Needs:
 ➢ Alkalis
 ➢ Water
 ➢ Reactive silica
• Makes
 ➢ Expansive gel

Outline

• Mechanisms of Failure
 • Saturation / Freezing and Thawing
 • Chemical Attack
 • Incremental Cracking
 • Others
Incremental Cracking

The Symptoms

- Not typical freezing and thawing
 - No thin flakes
Interfacial Zone

IFZ likely dissolved in salt solutions at low temperatures
Outline

- Mechanisms of Failure
 - Saturation / Freezing and Thawing
 - Chemical Attack
 - Incremental Cracking
 - Others

Other Causes

- Traffic
 - Unlikely – stress is ~50psi
 - Unless it is very early…
Other Causes

• Sawing
 ➢ Unlikely (Kevern)
 ➢ Except maybe at crossing points

Other Causes

• Early Entry Sawing
Other Causes

- Not all “shadowing” is doomed
- Sawing slurry

Other Causes

- Not all “shadowing” is doomed
- Tracks from the saw
Absorption Results

Other Causes

• Chert
Mechanisms Summary...

- Many things contribute
 - Water
 - Salts
 - Air void system
 - Chemical
 - Loading
 - Sawing

Outline

- Mechanisms of Failure
- Why Now, What’s New?
- Current Recommendations
Questions

- Why now?
 - Salting / Brines
 - Marginal air in situ
 - Changing system chemistry
 - Lack of inspection

Freeze - thaw cycles

Des Moines, IA 2005-2006

http://www.weather.gov
What’s in your salt?

• Read the labels

Questions

• Why in some joints
 • Batch variability
 • Drainage
 • Salt treatment
 • Hand placed
Ames, IA

- Non-distressed joint
 - Spacing factor: 0.007 in
 - w/cm: 0.40 to 0.45
- Distressed joint
 - Spacing factor: 0.005 in
 - w/cm: 0.42 - 0.47

I-275, Two Sites, Varying Performance

- Site 2 - showing deterioration at joint
- Site 4 - not exhibiting deterioration at joint
Summary

• Site 2
 – Poor air-void system
 – Alkali-silica reaction with fine aggregate particles and related cracks extending into hardened paste, but only within the top inch
 – Low paste density, high chloride ingress

• Site 4
 – Adequate air-void system
 – Alkali-silica reaction with fine aggregate particles, but without cracks extending into hardened paste
 – Higher paste density, lower chloride ingress

Outline

• Mechanisms of Failure
• Why Now, What’s New?
• Current Recommendations
So...

- The game has changed
 - Water has to be prevented from saturating the concrete
 - Permeability of the concrete should be as low as practical
 - The air void system in the in-place concrete must be adequate

Consider the System

- Where does water come from?
- Where can it go?
- What about the joints?
- And the mixture?
Design

- Drainage
 - Avoid bathtubs
- Drainage
 - Make sure surface water can get away
 - Not much should get through
- Drainage
 - Where is the water table?

Seal?

- Avoid joint details with reservoirs
- Maintain them
Sealant Has To be Maintained

Debonded and Damaged Bonded and Undamaged

Masten Moulzof

Seal?
- Avoid joint details with reservoirs
- Maintain them
MN Road

Unsealed Joints
46% cracked panels

Sealed Joints
5% cracked panels

T. Burnham, Mn/DOT 2011

Joints

- Not too close
 - Some don’t crack
- Not too far
 - Curling and warping
- Longitudinal shallower than transverse?
The Mixture

- 5% minimum behind the paver
- 0.40 max w/cm
- Use appropriate SCMs

Why 0.4?

- Keep the water out
 - Connectivity of capillaries increases with higher w/cm
How Do SCMs Work?

Cement + Water + SCM = more C-S-H

SCMS – Lower Permeability

Sorptivity of 15% MgCl₂ into Different 0.45 w/c Concrete Mixtures
Workmanship

- Curing (poly-alpha-methylstyrene)
- Consider topical surface sealants
- Choose salts carefully
- Maintain drainage systems

Inspection

- w/c – Microwave test (AASHTO T 318)
- Air – Calibrate for losses in the machine
- Curing – VOCs, Spray rates, Color?

- Warm bodies…
Review

- Life is getting more complicated
- Checklists may not be adequate
- Think through the system
- Ensure you get what you pay for